(4x^2-30x+32)/((x-2)(x-4)^2)=0

Simple and best practice solution for (4x^2-30x+32)/((x-2)(x-4)^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-30x+32)/((x-2)(x-4)^2)=0 equation:



(4x^2-30x+32)/((x-2)(x-4)^2)=0
Domain of the equation: ((x-2)(x-4)^2)!=0
x∈R
We multiply parentheses ..
(4x^2-30x+32)/((+x^2-4x-2x+8)^2)=0
We multiply all the terms by the denominator
(4x^2-30x+32)=0
We get rid of parentheses
4x^2-30x+32=0
a = 4; b = -30; c = +32;
Δ = b2-4ac
Δ = -302-4·4·32
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{97}}{2*4}=\frac{30-2\sqrt{97}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{97}}{2*4}=\frac{30+2\sqrt{97}}{8} $

See similar equations:

| 3x-4800=10x | | (5n+2)=(7n-1) | | 64^-k=1/16 | | 4^-2n=16^-3n | | 108=-8m-2(6m-4) | | 5^-2n=5^-n | | 186=-6(4n+1) | | n+8+n=4n+2 | | 10+7x=2x+5 | | 9-3y=24 | | 5x+32=13+48 | | -c/9+6=14 | | 10-10*10+10=a | | 4(p+6)=7(3-p) | | 5x=38.75^2 | | 8w=4480w= | | 8w=5580w= | | 2x/3x=38.75^2 | | -4(9-x)=12 | | 10-3x-x*2=0 | | -3(4c+6)=-162 | | 16x+17=x+62 | | 2(5a-6)=-62 | | 132=6(2k+8) | | 8p-8=5p-2 | | 9x+13=7x+31 | | -12(h+2)=-36 | | -7-5x=6x-7 | | 205=-5(7n+1) | | 3(6v-9)=45 | | x3+2x2+2=0 | | 81=-6(1+5r)-3 |

Equations solver categories